Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have gained considerable attention due to their diverse applications in various fields. However, concerns about their potential toxic effects on the environment and living organisms have also emerged. In this study, we synthesized and characterized Fe3O4 NPs and assessed their immunotoxicity on the coelomocytes of Eisenia fetida. The Fe3O4 NPs were synthesized using a co-precipitation method, and their physicochemical properties were determined using techniques such as X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The synthesized Fe3O4 NPs exhibited a uniform size distribution with spherical morphology and the phase purity was confirmed from XRD analysis. To evaluate the immunotoxicity of Fe3O4 NPs, Eisenia fetida coelomocytes were exposed to various concentrations of Fe3O4 NPs for 14 days. Furthermore, we analyzed the impact of Fe3O4 NPs on the biochemical parameters, including superoxide dismutase (SOD), catalase (CAT), acid phosphatase (APs), alkaline phosphatase (ALP), and total protein content (TPC), as well as conducted a histological examination. Biochemical analysis revealed significant alterations in the activity levels of SOD, CAT, APs, ALP, and TPC in the coelomocytes, indicating immune system dysregulation upon exposure to Fe3O4 NPs. Moreover, histological examination demonstrated structural changes, suggesting cellular damage caused by Fe3O4 NPs. These findings provide valuable insights into the immunotoxic effects of Fe3O4 NPs on Eisenia fetida and underscore the need for further investigation into the potential environmental impact of nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.