Abstract

Minimally invasive surgery will be gradually applied to the surgical treatment of bone tumors. One of the difficulties in the minimally invasive treatment of bone tumors is the lack of injectable materials that can be used to treat tumor-induced bone defects. Therefore, it is imperative to develop an injectable bone filler that can not only be injected into the defect site by minimally invasive methods to provide strong support and repair bone tissue but also inactivate residual tumor cells around the defect. To achieve this aim, in our study, for the first time, we doped Fe3O4/graphene oxide (GO) nanocomposites into α-tricalcium phosphate (α-TCP)/calcium sulfate (CS) biphasic bone cement to prepare an injectable magnetic bone cement (α-TCP/CS/Fe3O4/GO, αCFG), which can be applied in bone tumor minimally invasive surgery and fit ideally even if the area is irregular. The magnetothermal performance of the αCFG bone cement could be well adjusted by altering the content of Fe3O4/GO nanocomposites and the magnetic field parameters, but a 10 wt % Fe3O4/GO content formed the most stable bone cement with excellent magnetothermal performance. The αCFG bone cement not only promotes bone regeneration but also exhibits enhanced tumor treatment effects. Such multifunctional bone cement could provide a promising clinical strategy for the minimally invasive treatment of tumor-induced bone destruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.