Abstract
For humanoid robots, unexpected collision can cause instability of robot balancing and damage to both robots and environment. This paper presents a reactive bipedal walking controller against swing foot collision for humanoid robots. This controller is composed of following three components: 1) Swing Foot Trajectory Regenerator, 2) Swing Foot Collision Detector, and 3) Swing Foot Impact Mitigation Controller. By regenerating swing foot trajectory depending on situations, humanoid robots can avoid falling down. However, although humanoid robots detect collision and regenerate a swing foot, collision impact can cause bad effects such as damage and posture rotation. Therefore, to mitigate strong impact, we propose Swing Foot Impact Mitigation Controller, which is composed of two controllers. The proposed method is validated through the experiments by actual humanoid robot CHIDORI. We confirm that CHIDORI can avoid falling down against collision in two situations: walking on the flat ground, and stepping up a stair.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have