Abstract

This chapter presents the analysis and design of Dynamic Surface Control (DSC) with the application to biped walking with a variable step size. Under the assumption that the biped model consists of a single-leg support, a double impact, and a double-leg support phase model, the DSC is applied to the model which is a piecewise multi-input multi-output nonlinear system. Once the system becomes closed-loop with DSC, piecewise augmented error dynamics with provable stability properties are derived in the form of a piecewise linear system subject to exogenous inputs. Based on the error dynamics, a convex optimization problem is formulated to estimate the ellipsoidal error bound to guarantee the piecewise quadratic boundedness. Finally, the performance of DSC for the biped walking with a variable step size will be estimated by calculating a piecewise ellipsoidal error bound numerically and validated via simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.