Abstract

Let T = (V, E) be a tree with a properly 2-colored vertex set. A bipartite labeling of T is a bijection φ: V → {1, …, |V|} for which there exists a k such that whenever φ(u) ≤ k < φ(v), then u and v have different colors. The α-size α(T) of the tree T is the maximum number of elements in the sets {|φ(u) − φ(v)|; uv ∈ E}, taken over all bipartite labelings φ of T. The quantity α(n) is defined as the minimum of α(T) over all trees with n vertices. In an earlier article (J Graph Theory 19 (1995), 201–215), A. Rosa and the second author proved that 5n/7 ≤ α(n) ≤ (5n + 4)/6 for all n ≥ 4; the upper bound is believed to be the asymptotically correct value of (n). In this article, we investigate the α-size of trees with maximum degree three. Let α3(n) be the smallest α-size among all trees with n vertices, each of degree at most three. We prove that α3(n) ≥ 5n/6 for all n ≥ 12, thus supporting the belief above. This result can be seen as an approximation toward the graceful tree conjecture—it shows that every tree on n ≥ 12 vertices and with maximum degree three has “gracesize” at least 5n/6. Using a computer search, we also establish that α3(n) ≥ n − 2 for all n ≤ 17. © 1999 John Wiley & Sons, Inc. J Graph Theory 31:7–15, 1999

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call