Abstract
AbstractIn this paper, we study lower bounds on the size of a maximum independent set and a maximum matching in a hypergraph of rank three. The rank in a hypergraph is the size of a maximum edge in the hypergraph. A hypergraph is simple if no two edges contain exactly the same vertices. Let H be a hypergraph and let and be the size of a maximum independent set and a maximum matching, respectively, in H, where a set of vertices in H is independent (also called strongly independent in the literature) if no two vertices in the set belong to a common edge. Let H be a hypergraph of rank at most three and maximum degree at most three. We show that with equality if and only if H is the Fano plane. In fact, we show that if H is connected and different from the Fano plane, then and we characterize the hypergraphs achieving equality in this bound. Using this result, we show that that if H is a simple connected 3‐uniform hypergraph of order at least 8 and with maximum degree at most three, then and there is a connected 3‐uniform hypergraph H of order 19 achieving this lower bound. Finally, we show that if H is a connected hypergraph of rank at most three that is not a complete hypergraph on vertices, where denotes the maximum degree in H, then and this bound is asymptotically best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.