Abstract

Although caper processing wastewaters (CPW) are characterized by high organic content and salt concentration, no attempt has been made to treat these effluents. In this study, an immobilized cell bioreactor efficiently treated CPW even at hypersaline conditions (100 g/L salinity). Nitrogen was mainly assimilated during biotreatment, as nitrification was inhibited at elevated salinities. The hydrolytic potential was assessed by determining glucanase, xylanase, glucosidase, lipase and protease activities, which were negatively affected above 20 g/L salinity as the consequence of the inhibition of non-halotolerant microbiota. Succession of non-halotolerant taxa by the slightly halotolerant bacteria Defluviimonas, Amaricoccus, Arenibacter, Formosa and Muricauda, and then by the moderately/extremely halotolerant genera Halomonas, Roseovarius and Idiomarina occurred over salinity increase. Diversity indices were reduced during transition from moderately saline to hypersaline conditions. A distinct network was formed at hypersaline conditions, consisting of the halotolerant genera Halomonas, Idiomarina, Saliterribacillus and Gracilibacillus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.