Abstract

Herein, tyrosol [2-(4-hydroxyphenyl) ethanol], which is rich in olive oil and red wine, was converted to a novel bioactive galactoside by enzymic glycosylation. The gene of α-galactosidase from Geobacillus stearothermophilus 23 was cloned and expressed in Escherichia coli as catalytically active inclusion bodies. The catalytically active inclusion bodies efficiently catalyzed the galactosylation of tyrosol using either melibiose or raffinose family oligosaccharides as glycosyl donors, resulting in a glycoside with 42.2 or 14.2% yields. The glycoside product was purified and identified as p-hydroxyphenethyl α-d-galactopyranoside by mass spectrometry and NMR analyses. The inclusion bodies can be recycled and reused for at least 10 batch reactions of galactoside synthesis. Moreover, the galactoside showed 11-fold increased water solubility and reduced cytotoxicity as compared to tyrosol. Also, it exhibited higher antioxidative and anti-inflammatory activities than tyrosol based on lipopolysaccharide-induced activated BV2 cells. These results provided important insights into the application of tyrosol derivatives in functional foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call