Abstract

The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3–83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3–100% of the TBBPA was incorporated into the soils as non-extractable bound residue with <4% mineralized. The soil fate studies demonstrated extensive incorporation of TBBPA into the solid matrix and this association was related to the amount of organic carbon in the soils (i.e., greater association of TBBPA with soil at higher organic carbon content). In anaerobic sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.