Abstract

Considerable research has focused on the fate of 17β-estradiol (17β-E2) given its high estrogenic potency and frequent detection in the environment; however, little is known about the fate behavior of 17α-estradiol (17α-E2) although it often dominates in some animal feces, and recently has been shown to have similar impacts as the β-isomer. In this study, the aerobic biotransformation rates of 17α-E2 and 17β-E2 applied at 50μgkg−1 soil and metabolite trends were quantified in batch microcosms at ∼21°C and 70–85% field capacity using two soils with different taxonomic properties. Soils were extracted at designated times over a 3-week period and analyzed over time using negative electrospray ionization tandem mass spectrometry. For a given soil type, the two isomers degraded at the same rate with half lives across soils ranging between 4 and 12h. Estrone (E1) was the only metabolite detected and in all cases subsequent dissipation patterns of E1 are statistically different between isomers. Autoclaved-sterilized controls support that E2 dissipation is dominated by microbial processes. A first order exponential decay model that assumed sorption did not limit bioavailability was not able to accurately predict hormone residuals at later times, which indicates caution is required when trying to model fate and transport of hormones in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call