Abstract

Two commercial coating systems, each one consisting of both a primer and an antifouling (“System 1” based on Copper Oxide and “System 2” based on Zinc Oxide), have been analyzed in order to investigate their environmental impacts through Life Cycle Assessment (LCA) and laboratory tests.A cradle-to-grave analysis has been performed in order to quantify the environmental footprint of each coating solution and to define which element, material, or process mainly affect the environmental impact of such products. Moreover, it was performed a comparison between the different products to determine the most environmentally sustainable choice.In addition to LCA, several incubations of coated metal samples, by means of an innovative incubation system developed by the authors, have also been performed in marine water (Gulf of Naples, Mediterranean Sea, Italy), as critical environment favoring metal corrosion and biofouling generation.The life cycle analysis has showed that the production phase presents the highest environmental impact in almost all categories, mainly due to the use of chemical compounds. Moreover, after the laboratory tests, strong biotoxicity and contaminant diffusion, contributing to the marine toxicity potential, have been observed for both the commercial paints.As a final remark, there are straightforward indications of a strong need for anti-Microbial-Induced-Corrosion commercial coatings to substitute the toxic compounds with others in order to develop a greener solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call