Abstract
Biotin-conjugated multistimuli-responsive polysaccharide vesicular nanocarriers are designed and developed, for the first time, to accomplish receptor-mediated endocytosis in cancer cells and to deliver anticancer drugs to intracellular compartments. For this purpose, a new renewable hydrophobic unit was custom designed with redox-degradable disulfide and enzyme-biodegradable aliphatic ester chemical linkages, and it was conjugated along with biotin on the dextran backbone. The dextran derivative self-assembled into nanovesicles of <200 nm in size, which were characterized by dynamic and static light scattering, electron, and atomic force microscopes. Avidin-HABA assay established the high affinity of biotin-tagged dextran vesicles toward membrane-receptors up to 25 nM concentration. Doxorubicin-hydrochloride (DOX.HCl)-loaded dextran vesicles exhibited stable formulation in phosphate-buffered saline (PBS) and fetal bovine serum (FBS). Redox-degradation by glutathione (GSH) showed 60% drug release, whereas lysosomal esterase enzyme enabled >98% drug release in 12 h. Confocal microscope and flow cytometry-assisted time-dependent cellular uptake studies revealed that the biotin-receptors overexpressed in cervical cancer cells (HeLa) exhibited larger drug accumulation through the receptor-assisted endocytosis process. This process enabled the delivery of higher amount of DOX and significantly enhanced the killing in cancer cells (HeLa) compared to wild-type mouse embryonic fibroblast cells (WT-MEF, normal cells). Control experiments such as biotin pretreatment in cancer cells and energy-suppressed cellular uptake at 4 °C further supported the occurrence of receptor-mediated endocytosis by the biotin-tagged polymer vesicles. This report provides first insights into the targeted polysaccharide vesicle platform, and the proof-of-concept is successfully demonstrated in biotin receptor-overexpressed cervical cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.