Abstract

The present study investigated the physicochemical and microbiological changes occurring during the storage of simulated restaurant food waste (FW) and how such changes affected its biohydrogen and biogas production potential. FW was stored for 72 h in a closed atmosphere under two different scenarios: i) without and ii) with inoculation of a mixed microbial culture harboring lactic acid bacteria (LAB). Both storage scenarios resulted in similar biotic and abiotic changes in FW. Particularly, FW was pre-acidified and pre-hydrolyzed to some extent during the storage, resulting in a feedstock enriched in LAB (≈ 95 % total relative abundance) and lactate (10.5–12.3 g/L, 87.0–90.5 % selectivity). Biochemical hydrogen potential tests revealed that the use of stored FW resulted in similar or even higher hydrogen production efficiencies compared to that of non-stored FW, achieving up to 60 NmL H2/g VS added and a maximum volumetric hydrogen production rate of 9.7 NL H2/L-d. Metabolically, the conversion of lactate into hydrogen was crucial regardless of the use of non-stored or stored FW, albeit the presence of fermentable carbohydrates in the substrate was also essential either to produce lactate or to co-produce extra hydrogen. On the contrary, biochemical methane potential tests showed that the biogas production potential of FW was not affected by storage, yielding on average 400 NmL CH4/g VS added and revealing that lactate oxidation to methane precursors represented an important step in FW biomethanization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.