Abstract
While the relationship between abiotic drivers of sap flux are well established, the role of biotic disturbances on sap flux remain understudied. The invasion of the emerald ash borer (Agrilus planipennis Fairmaire, EAB) into North America in the 1990s represents a significant threat to ash trees (Fraxinus spp.), which are a substantial component of temperate forests. Serpentine feeding galleries excavated by EAB larvae in the cambial and phloem tissue are linked to rapid tree mortality. To assess how varying levels of EAB infestation impact the plant water status and stress levels of mature green ash (Fraxinus pennsylvanica Marshall) trees, we combined tree-level sap flux measurements with leaf-level gas exchange, isotopes, morphology and labile carbohydrate measurements. Results show sap flux and whole tree water use are reduced by as much as 80% as EAB damage increases. Heavily EAB impacted trees exhibited reduced leaf area and leaf mass, but maintained constant levels of specific leaf area relative to lightly EAB-impacted trees. Altered foliar gas exchange (reduced light saturated assimilation, internal CO2 concentrations) paired with depleted foliar δ13C values of heavily EAB impacted trees point to chronic water stress at the canopy level, indicative of xylem damage. Reduced photosynthetic rates in trees more impacted by EAB likely contributed to the lack of nonstructural carbohydrate (soluble sugars and starch) accumulation in leaf tissue, further supporting the notion that EAB damages not only phloem, but xylem tissue as well, resulting in reduced water availability. These findings can be incorporated into modeling efforts to untangle post disturbance shifts in ecosystem hydrology.
Highlights
Patterns of sap flux in trees are used in estimates of whole-tree water use, tree-level transpiration, and are even scaled to ecosystem transpiration, as such precise measurements of water exchanges are essential for coupled biosphere-atmosphere models
We measured reduction of sap flux below the expected 1:1 relationship between relative daily sap flux and relative canopy cover as well as relative daily sap flux. This relationship indicates that reductions in daily water use are not proportional to reductions in leaf area and the proportion of functional cambial tissue which governs mass flow is not solely responsible for the reductions seen in daily sap flux
This study reveals the negative impacts tree boring insects on tree water use and highlights the canopy decline, leaf morphological and chemical shifts that accompany tree-level EAB infestation
Summary
Patterns of sap flux in trees are used in estimates of whole-tree water use, tree-level transpiration, and are even scaled to ecosystem transpiration, as such precise measurements of water exchanges are essential for coupled biosphere-atmosphere models. The impacts of biotic factors such as tree boring forest pests on host water use are largely understudied (but see [5]), despite the considerable impacts they have on forest systems [6]. Several studies have demonstrated reduced sap flux and water use associated with the disease progression and susceptibility of host trees to fungal pathogens (e.g., [13,14,15,16]) as well as forest response to defoliation (e.g., [17,18]). We could identify only a single study describes tree-level sap flux declines following a tree boring beetle attack (i.e., mountain pine beetle (Dendroctonous poderosae Hoplins) infestation of lodgepole pine (Pinus contorta Douglas) [5]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have