Abstract

To mitigate the growing threat of climate change and develop novel technologies that can eliminate carbon dioxide, the most abundant greenhouse gas derived from the flue gas stream of the fossil fuel-fired power stations, is momentous. The development of carbon capture and sequestration-based technologies may play a significant role in this regard. Carbon fixation mostly occurs by photosynthesizing plants as well as photo and chemoautotrophic microbes that turn the atmospheric carbon dioxide into organic materials via their enzymes. Biofuel can offer a sustainable solution for carbon mitigation. The pragmatic implementation of biofuel production processes is neither cost-effective nor has been proven safe over the long term. Searching for ways to enhance biofuel generation by the employment of genetic engineering is vital. Carbon biosequestration can help to curb the greenhouse effect. In addition, new genomic approaches, which are able to use gene-splicing biotechnology techniques and recombinant DNA technology to produce genetically modified organisms, can contribute to improvement in sustainable and renewable biofuel and biomaterial production from microorganisms. Biopolymers, Biosurfactants, and Biochars are suggested as sustainable future trends. This study aims to pave the way for implementing biotechnology methods to capture carbon and decrease the demand and consumption of fossil fuels as well as the emissions of greenhouse gases. Having a better image of microorganisms' potential role in carbon capture and storage can be prolific in developing powerful techniques to reduce CO2 emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.