Abstract

A long-standing challenge in the mining industry is the separation of mineral particles that have similar surface characteristics for which surfactant-based flotation collectors cannot discriminate. In Florida phosphate mining, this problem occurs in the separation of dolomite [CaMg(CO3)2] contaminants from the desired francolite mineral {a fluorapatite [Ca5(PO4)3(F,OH)]}. In this study, phage display techniques were used to select phage clones with specific binding affinity to francolite, which were then tested in a benchtop bubbler flotation apparatus for their ability to selectively float francolite particles from mixtures containing dolomite. Contact angles measured with the captive bubble technique were used to examine changes in the surface character of the mineral particles upon adsorption of the phage, which showed that the most selective phage led to an increase in the contact angle from 16 to 50°. Although this is below the level considered hydrophobic, the correlation between contact angles and increased flotation recovery suggests that the phage coat proteins are behaving as efficient bioamphiphiles for the attachment of the particles to air bubbles, demonstrating a new and environmentally friendly type of biocollector system. The chemical and physical characteristics of the phage "tail" peptides were evaluated to offer an explanation for the specificity of phage binding. We conclude with a discussion of the potential benefits of this biotechnology approach, even for commodity industries such as mining or other particle separation systems, when costs and sustainability are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call