Abstract

Globally, the fossil fuel reserves are depleting rapidly and the escalating fuel prices as well as plethora of the pollutants released from the emission of burning fossil fuels cause global warming that massively disturb the ecological balance. Moreover, the unnecessary utilization of non-renewable energy sources is a genuine hazard to nature and economic stability, which demands an alternative renewable source of energy. The lignocellulosic biomass is the pillar of renewable sources of energy. Different conventional pretreatment methods of lignocellulosic feedstocks have employed for biofuel production. However, these pretreatments are associated with disadvantages such as high cost of chemical substances, high load of organic catalysts or mechanical equipment, time consuming, and production of toxic inhibitors causing the environmental pollution. Nanotechnology has shown the promised biorefinery results by overcoming the disadvantages associated with the conventional pretreatments. Recyclability of nanomaterials offers cost effective and economically viable biorefineries processes. Lignolytic and saccharolytic enzymes have immobilized onto/into the nanomaterials for the higher biocatalyst loading due to their inherent properties of high surface area to volume ratios. Nanobiocatalyst enhance the hydrolyzing process of pretreated biomass by their high penetration into the cell wall to disintegrate the complex carbohydrates for the release of high amounts of sugars towards biofuel and various by-products production. Different nanotechnological routes provide cost-effective bioenergy production from the rich repertoires of the forest and agricultural-based lignocellulosic biomass. In this article, a critical survey of diverse biomass pretreatment methods and the nanotechnological interventions for opening up the biomass structure has been carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.