Abstract

The biosynthesis of the thiopeptide thiomuracin is a well-orchestrated process involving a multitude of posttranslational modifications. We show that six Cys residues of a precursor peptide are first cyclodehydrated and oxidized to thiazoles in an ordered, but nonlinear fashion that is leader-peptide-dependent. Then four alcohols are glutamylated and converted to alkenes in a C-to-N terminal directional process that is leader-peptide-independent. Finally, two of these alkenes undergo a formal [4 + 2] cycloaddition to form a trithiazole-substituted pyridine macrocycle. We describe here the factors that govern the substrate specificity and order of biosynthetic events that turn a ribosomal peptide into a powerful antibiotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.