Abstract

Ultrasound contrast agents are valuable for diagnostic imaging and drug delivery. Generally, chemically synthesized microbubbles (MBs) are micro-sized particles. Particle size is a limiting factor for the diagnosis and treatment of many extravascular diseases. Recently, gas vesicles (GVs) from some marine bacteria and archaea have been reported as novel nanoscale contrast agents, showing great potential for biomedical applications. However, most of the GVs reported in the literature show poor contrast imaging capabilities due to their small size, especially for the in vivo condition. In this study, we isolated the rugby-ball-shaped GVs from Halobacteria NRC-1 and characterized their contrast imaging properties in vitro and in vivo. Our results showed that GVs could produce stable and strong ultrasound contrast signals in murine liver tumors using clinical diagnostic ultrasound equipment at the optimized parameters. Interestingly, we found these GVs, after systemic administration, were able to perfuse the ischemic region of a tumor where conventional lipid MBs failed, producing a 6.84-fold stronger contrast signal intensity than MBs. Immunohistochemistry staining assays revealed that the nanoscale GVs, in contrast to the microscale MBs, could penetrate through blood vessels. Thus, our study proved these biosynthesized GVs from Halobacterium NRC-1 are useful for future molecular imaging and image-guided drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call