Abstract

Background The biosynthesis of nanoparticles represents a rapid, environmentally friendly, cost-effective, and straightforward technology. This approach allows for the production of nanoparticles with a wide range of chemical compositions, sizes, shapes, high uniformity, and scalability. One of the principal advantages of biogenic nanoparticles is their water solubility and compatibility with biological systems. Biologically synthesized nanoparticles have demonstrated superior efficiency compared to conventionally synthesized particles. Among biosynthesis, microbial-mediated biosynthesis is a promising one that has a selectively reducing ability on specific metal ions through electron transfer. Objectives Evaluation of antimicrobial and antioxidant activity of silver nanoparticle synthesized by actinobacteria Micromonospora sp. which is isolated from marine environment. Materials and methods In this study, actinobacteria were isolated from the marine sediment using the spread plate method. The isolates were identified based on morphological observation, cell wall amino acids, sugar analysis, and micromorphological analysis. The silver nanoparticle synthesis from microbes and their inhibition against clinical pathogens have been evaluated by the disc diffusion method.Antioxidant efficiency was evaluated in termsof total antioxidant activity through ammonium molybdenum assay. Results A total of five isolates were isolated from the sediment sample. The cell-free extract of MBIT-MSA4 can synthesize silver nanoparticles that have potential antimicrobial activity against the clinical pathogens Streptococcus mutans at a zone of inhibition 6 mm, 10 mm inhibition zone of Klebsiella pneumonia,and 8 mm zone of inhibition of Staphylococcus aureus. Also, it has significant antioxidant activity up to 73% of free radical inhibition. Conclusion Marine microbial-mediated biosynthesized silver nanoparticles have potential antimicrobial activity against S.mutansand methicillin-resistantStaphylococcus aureus(MRSA) and inhibit the oxidation process through antioxidant activity. Thisenhanced efficient biosynthesisednanoparticle has significantly reduced the concentration of free radicals caused by pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call