Abstract

The development of effective photocatalyst through green and eco-friendly approach has become a great concern for the light-induced degradation of organic pollutant dyes. This article reports a simple, cost-effective, and a benign environmental biosynthesis of Ag nanoparticles (NPs) using Cyperus pangorei, a plant extract with three different concentrations of AgNO3 in aqueous media. The synthesized silver nanoparticles were performed ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), photoluminescence (PL), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The surface plasmon resonance (SPR) peak at 437 nm in UV–Vis spectroscopy confirmed the reduction of Ag+ ions into Ag nanoparticles. FTIR spectra revealed that plant extract could reduce/stabilize/capping to form Ag nanoparticles, and strong PL emission spectra tend to exhibit higher photocatalytic activity. The structural information is derived from XRD and TEM, which can exhibit the FCC structure and polydisperse with the spherical shape. EDX addresses the presence of Ag constitute. XPS confirmed the Ag nanoparticles in characteristic silver peaks, plant extract derivatives, and their oxidative states’ binding energy. The photocatalytic activity of Ag nanoparticles against dye Rhodamine B (Rh-B) under ultraviolet irradiation with periodic interval and pseudo-first-order kinetics were also studied. The obtained results show that the synthesized Ag nanoparticles can degrade dye (Rh-B) up to 86% within 2 h of irradiation time. Furthermore, the present study suggests that the biosynthesized Ag nanoparticles could be potential photocatalysts against various industrial dyes as well as C. pangorei; plant extract can be usto modify and develop more efficient nano-photocatalyst for other application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call