Abstract

The present work proposed a simple, one pot, and green approach for the deoxygenation of graphene oxide (GO) using pyrogallol as reducing and stabilizing agent. This synthetic strategy prevents the utilization of toxic reducing reagents during synthesis. The characterization results of Ultra violet visible (UV–Vis), X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), Transmission electron microscopy (TEM) for the synthesized GO and reduced graphene oxide (RGO) indicated the strong removal of oxygen groups after reduction which followed by stabilization with oxidized form of pyrogallol. TEM analysis showed the thin transparent silk like sheets of graphene. FTIR analysis confirmed the stabilization of graphene sheets with oxidized pyrogallol molecules. XRD and XPS analysis represented the deoxygenation of GO to RGO. The in-vitro cytotoxicity of RGO towards HeLa cells is dose dependant. The prepared RGO also exhibited the percent cell viability of about 80% even at higher concentrations indicating the less toxic nature of the RGO stabilized with pyrogallol. These results have represented that this synthetic approach is effective for the preparation of bulk scale RGO in a simple, less expensive and eco-friendly method. Since this method avoids the use of chemical reagents that are toxic in nature, the produced graphene are likely to offer several potential biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.