Abstract

Biorefineries enable the circular, sustainable, and economic use of waste resources if value-added products can be recovered from all the generated fractions at a large-scale. In the present studies the comparison and assessment for the production of value-added compounds (e.g., proteins, lutein, and lipids) by the microalga Chlorella sorokiniana grown under photoautotrophic or heterotrophic conditions was performed. Photoautotrophic cultivation generated little biomass and lipids, but abundant proteins (416.66 mg/gCDW) and lutein (6.40 mg/gCDW). Heterotrophic conditions using spruce hydrolysate as a carbon source favored biomass (8.71 g/L at C/N 20 and 8.28 g/L at C/N 60) and lipid synthesis (2.79 g/L at C/N 20 and 3.61 g/L at C/N 60) after 72 h of cultivation. Therefore, heterotrophic cultivation of microalgae using spruce hydrolysate instead of glucose offers a suitable biorefinery concept at large-scale for biodiesel-grade lipids production, whereas photoautotrophic bioreactors are recommended for sustainable protein and lutein biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call