Abstract

BackgroundThe filamentous microalgae Tribonema minus accumulates large amounts of lipids under photoautotrophic condition, while under heterotrophic condition, the lipid content decreased dramatically. Determination of the differences in metabolic pathways between photoautotrophic and heterotrophic growth will provide targets and strategies for improvement of lipid accumulation in heterotrophic cells.MethodsThe metabolic differences between photoautotrophically and heterotrophically cultivated T. minus cells were studied by comparing the growth, biochemical compositions and transcriptomic and metabolomic profiles of the cells. Based on comparative transcriptomic and metabolomic studies, we generated a global model of the changes in central carbon metabolism and lipid biosynthetic pathways that occur under photoautotrophic and heterotrophic growth conditions. Moreover, the specific effects of supplementation with exogenous key metabolic intermediates on the lipid accumulation in heterotrophic culture were analyzed.ResultsCompared to photoautotrophic cultures, heterotrophic cultures exhibited enhanced biomass levels and carbohydrate content, but decreased lipid accumulation. These effects were accompanied by low expression levels of genes involved in glycolysis, de novo fatty acids biosynthesis and lipid biosynthesis, and high levels of genes involved in gluconeogenesis. In addition, the levels of key metabolites involved in glycolysis/gluconeogenesis were elevated in abundance, whereas those of certain fatty acids and citric acid were decreased in heterotrophic cultures. Upon supplementation with exogenous potassium palmitate, the lipid content increased dramatically in heterotrophically cultivated T. minus.ConclusionAn insufficient supply of carbon precursors caused the low levels of lipid accumulation during heterotrophic cultivation. Appropriate carbon metabolite supplementation based on the metabolomic data was shown to promote lipid accumulation. Moreover, gene regulatory metabolic targets were also identified via omics analysis.

Highlights

  • Continuous increasing pressures of fuel production and environmental protection have led to surge in the search for alternative and renewable energy [1]

  • Comparison of the growth and biochemical compositions accumulation of T. minus under photoautotrophic and heterotrophic conditions Microalga Tribonema minus cells were grown in column photobioreactors under photoautotrophic and heterotrophic conditions

  • The lipid content was greater than 55% under photoautotrophic condition (Fig. 1b); the value was much lower under heterotrophic cultivation, with the highest of 24.72% observed at day 10

Read more

Summary

Introduction

Continuous increasing pressures of fuel production and environmental protection have led to surge in the search for alternative and renewable energy [1]. Some microalgal strains produce lipids for energy storage, and these lipids are stored intracellularly as reserve material during the vegetative period of growth [4]. Among these microalgae, the yellow–green microalga Tribonema sp., which can accumulate large amounts of lipid droplets in the cytoplasm, is the first reported filamentous oleaginous microalgae. The filamentous microalgae Tribonema minus accumulates large amounts of lipids under photoautotrophic condition, while under heterotrophic condition, the lipid content decreased dramatically. Determination of the differences in metabolic pathways between photoautotrophic and heterotrophic growth will provide targets and strategies for improvement of lipid accumulation in heterotrophic cells

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call