Abstract

1-Benzazepine is a pharmaceutically important scaffold but is rare among natural products. Nanangelenin A (1), containing an unprecedented 3,4-dihydro-1-benzazepine-2,5-dione-N-prenyl-N-acetoxy-anthranilamide scaffold, was isolated from a novel species of Australian fungus, Aspergillus nanangensis. Genomic and retrobiosynthetic analyses identified a putative nonribosomal peptide synthetase (NRPS) gene cluster (nan). The detailed biosynthetic pathway to 1 was established by heterologous pathway reconstitution in A. nidulans, which led to biosynthesis of intermediates nanagelenin B-F (2-5 and 7). We demonstrated that the NRPS NanA incorporates anthranilic acid (Ant) and l-kynurenine (l-Kyn), which is supplied by a dedicated indoleamine-2,3-dioxygenase NanC encoded in the gene cluster. Using heterologous in vivo assays and mutagenesis, we demonstrated that the C-terminal condensation (CT) and thiolation (T3) domains of NanA are responsible for the regioselective cyclization of the tethered Ant-l-Kyn dipeptide to form the unusual benzazepine scaffold in 1. We also showed that NanA-CT catalyzes the regioselective cyclization of a surrogate synthetic substrate, Ant-l-Kyn-N-acetylcysteamine, to give the benzazepine scaffold, while spontaneous cyclization of the dipeptide yielded the alternative kinetically favored benzodiazepine scaffold. The discovery of 1 and the characterization of NanA have expanded the chemical and functional diversities of fungal NRPSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.