Abstract

Olive mill wastewaters (OMW) contain significant levels of phenolic compounds with antimicrobial/phytotoxic activity and high amounts of undecomposed organic matter that may exert negative effects on soil biology. Among OMW detoxification techniques, those focusing on oxidative degradation of phenolic compounds are relevant. The composting (bio-oxidation) process in particular, exploits exothermic oxidation reactions by microorganisms to transform the organic matrix of OMW into an amendment biologically stable and feasible to use in agriculture. This process consists of an active phase during which organic compounds are rapidly decomposed, and a curing phase characterized by a slow breakdown of the remaining materials with the formation of humic substances (HS) as by-products. In this study, bio-oxidation of OMW was performed using a pre-treated organic material derived from municipal solid waste (MSW). The obtained amendment (OMWF) was stable and in accordance with the legislative parameters of mixed organic amendments. HS were then extracted from OMWF and MSW (control amendment, Amd-C), and differences in structural properties of their humic acid (HA) fraction were highlighted via spectroscopy (Fourier Transform Infrared) and Dynamic Light Scattering. To assay a potential use of HA as biostimulants for crops, 12-day old Zea Mays L. plants were supplied with HA at 0.5 mg and 1 mg C L-1 for 2 days. HA from both amendments increased plant growth, but HA from OMWF was more effective at both dosages (plus 35–37%). Also, HA from OMWF enhanced both nitrogen assimilation and glycolysis by increasing the activity of nitrate reductase (∼1.8–1.9 fold), phosphoglucose isomerase (PGI) (∼1.8–2 fold) and pyruvate kinase (PK) (∼1.5–1.8 fold), while HA from Amd-C targeted glycolysis preferentially. HA from OMWF, however, significantly stimulated plant nutrition only at lower dosage, perhaps because certain undetermined compounds from detoxified OMW and incorporated in HA altered the root membrane permeability, thus preventing the increase of nutrient uptake. Conversely, HA from Amd-C increased nutrient accumulation in maize at both dosages. In conclusion, our results indicate that the amendment obtained via OMW composting using MSW had a reduced pollution load in terms of phenolic compounds, and HA extracted from OMWF could be used as valuable biostimulants during maize cultivation.

Highlights

  • Olive mill wastewaters (OMW), named olive vegetable waters, are endowed with properties that depend on the fruit variety and maturity, climate, soil type and extraction procedure (Borja et al, 2006)

  • Combining the importance of humic substances (HS) in plant productivity and the idea of recycling OMW for agricultural purposes, the aim of this study consisted in: (i) detoxifying OMW via a biooxidation process using a pre-treated organic material derived from municipal solid waste (MSW); (ii) extracting humic acids (HA) from the resulting amendment and compare their properties with those of HA obtained from a control amendment (MSW without OMW); (iii) testing whether the obtained HA displayed beneficial properties on maize (Zea Mays L.) plant metabolism and could be used as valuable biostimulants

  • The pH value was within the typical range of OMW (4–6.7) (Incelli et al, 2016), while the chemical oxygen demand (COD) and the biological oxygen demand (BOD) displayed high values (Rinaldi et al, 2003)

Read more

Summary

INTRODUCTION

Olive mill wastewaters (OMW), named olive vegetable waters, are endowed with properties that depend on the fruit variety and maturity, climate, soil type and extraction procedure (Borja et al, 2006). HS influence plant physiology by triggering complex transcriptional networks through an intricate mechanism of action involving auxin- dependent and independent signaling pathways (Muscolo et al, 2013; Nardi et al, 2016, 2017) They are widely recognized as biostimulants, i.e., products containing substances and/or microorganisms whose function in trivial amounts is to promote plant growth-related processes, enhance plant nutrient uptake and use efficiency, resistance and tolerance to abiotic stress, and improve the quality of crop-derived products (European Biostimulants Industry Council [EBIC], 2013). Combining the importance of HS in plant productivity and the idea of recycling OMW for agricultural purposes, the aim of this study consisted in: (i) detoxifying OMW via a biooxidation process using a pre-treated organic material derived from municipal solid waste (MSW); (ii) extracting HA from the resulting amendment and compare their properties with those of HA obtained from a control amendment (MSW without OMW); (iii) testing whether the obtained HA displayed beneficial properties on maize (Zea Mays L.) plant metabolism and could be used as valuable biostimulants

MATERIALS AND METHODS
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.