Abstract

Composting enables a detailed evaluation of the humification process of various organic wastes within a short period of time (3 to 6 months). Humic substances (HS) constitute a large fraction of the organic matter (OM) in compost, and they are its most active fraction due to their effects on soil ecology, structure, fertility and metal complexes, and plant growth. The formation and properties of HS extracted from various composts such as municipal solid waste (MSW), grape marc (GM), composted separated cattle manure (CSM), sewage sludge (SS), wood compost (WC) and other organic wastes were studied. Degradative and non-degradative techniques (FTIR, DRIFT, 13C-NMR) were used to study the transformation of HS during composting of the various organic wastes. Time-course studies of composting some of these wastes showed an increase in the relative amount of humic acid (HA) (from 18% to 45% of OM in CSM compost and from 5% to 20% in MSW compost), whereas the formation rate of fulvic acid (FA) was inconsistent. A humification ratio (HR – the ratio of HA/FA) was used to evaluate compost maturity. Values of 0.9 to 3.4 and 3.0 to 9.2 were typical for immature and mature composts, respectively. Another humification index (HI) used to define compost maturity was calculated as the ratio between non-humified fraction (NHF) and the humified fraction (HA+FA). A HI decrease during composting represents the formation of HS. Elemental- and functional-group analyses indicated only minor differences between HA extracted from composts at various stages. Moreover, these values fell into a wide range, similar to that of soil HA. The 13C-NMR spectra of the HA exhibited strong bands representing aliphatic structures in various composts (50% of total C in CSM, 30% in MSW and 61% in GM) and a lower level of aromatic components (37% in CSM, 22% in MSW and 22% in GM). The FTIR spectra showed similar trends of strong aliphatic and carbohydrate components. Both techniques provided more qualitative information indicating that HA extracted from mature compost exhibits more aromatic structures and carboxyl groups and less carbohydrate components than that from immature compost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.