Abstract

ABSTRACT Introduction: There is a lack of electrochemical biosensors that allow finding hemoglobin (Hb), a protein found within red blood cells, available in athletes’ urine samples. Objective: This work is focused on the production of dsDNA immobilized on an Au-modified glassy carbon electrode (dsDNA/Au/GCE) and its use as a sensor for the presence of urinary hemoglobin. Methods: The elements were deposited in spherical form and tested as a porosity electrode surface for DNA immobilization according to the surface scan of the functionalized dsDNA/Au/GCE using SEM analysis. DPV and amperometry were used to conduct electrochemical studies. Results: Amperometric analyses showed that Hb determination on dsDNA/Au/GCE showed better stability and sensitivity. In the existence of multiple interfering species and clinical urine samples produced, the selectivity and the actual ability of dsDNA/Au/GCE for hemoglobin determination were investigated. Conclusion: The results showed that dsDNA/Au/GCE is effective, reliable, and selective as an electrochemical sensor of Hb. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.