Abstract

Phytoremediation is a proven low-cost and sustainable method for the removal of toxic pollutants from water. This green technology has been practiced for the past several years all over the world. In the present study, the interaction of fluoride on the surface of the floating aquatic plant water lettuce (Pistia stratiotes) during fluoride removal was investigated. Batch kinetic studies were performed to examine the fluoride uptake capacity of the plant with different initial fluoride concentrations such as 3, 5, 10, and 20 mg/L. The effects of various process parameters on fluoride uptake dynamics such as pH, plant biomass, initial fluoride concentration, and time were examined. Freundlich’s isotherm model was found to (R 2 = 0.957) fit well to the experimental data. The nature of reaction order followed pseudo-first-order kinetics, when the initial fluoride level in the solution was 5 mg/L. The experimental findings showed that the removal mechanism was driven by biosorption phenomenon. High fluoride concentration in the solution reduced the growth ratio of P. stratiotes. The lowest growth ratio of this aquatic macrophyte was found to be 76.80 ± 3.73% at 20 mg/L fluoride concentration. At lower fluoride concentrations such as 3 and 5 mg/L, the growth ratio of the plant was not reduced significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.