Abstract

Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption–desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l −1 of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of ≈13 and 3 mg g −1, respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1 M HNO 3 solution was 100% effective. After two consecutive sorption–desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.