Abstract

BackgroundIn this study, we present a low-cost, environmentally friendly method for producing silver, copper, and iron nanoparticles using fresh Catharanthus roseus leaf extract. The biomolecules found in the plant extract play a crucial role as stabilizing and reducing agents. The spectral profile of the UV–visible spectrophotometer was measured to confirm and identify the biosynthesized nanoparticles. The synthesized nanoparticles were tested for biosensing activities and anti-inflammatory effects.ResultUV–visible spectra showed a prominent surface resonance peak of 415 nm, 300 nm, and 400 nm, corresponding to the formation of silver, copper, and iron nanoparticles, respectively. The in vitro anti-inflammatory properties of the synthesized AgNPs, CuNPs, and FeNPs showed the maximum inhibition of protein denaturation at 58%, 54.15%, and 44.26% at a concentration of 400 µg/ml, respectively. Furthermore, at a 400 µg/ml concentration, Diclofenac, utilized as a control, showed a maximal inhibition of 93.37%. According to the biosensing activity, these nanoparticles are also a good source for biosensing hazardous heavy salts. So, this article provides the first description of the silver, copper, and iron nanoparticles from Catharanthus roseus leave biosensing capabilities and anti-inflammatory characteristics.ConclusionOverall, this study revealed that due to their biocompatibility, silver, copper, and iron nanoparticles could be appealing and environmentally acceptable options that could be used as innovative therapeutic agents for the prevention and treatment of inflammation. The primary outcome of the research will be the development of potential pharmaceutical uses for the C. roseus medicinal plant in the biomedical and nanotechnology-based industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call