Abstract

We derive the Christoffel–Geronimus–Uvarov transformations of a system of bi-orthogonal polynomials and associated functions on the unit circle, that is to say the modification of the system corresponding to a rational modification of the weight function. In the specialisation of the weight function to the regular semi-classical case with an arbitrary number of regular singularities { z 1 , … , z M } the bi-orthogonal system is known to be monodromy preserving with respect to deformations of the singular points. If the zeros and poles of the Christoffel–Geronimus–Uvarov factors coincide with the singularities then we have the Schlesinger transformations of this isomonodromic system. Compatibility of the Schlesinger transformations with the other structures of the system — the recurrence relations, the spectral derivatives and deformation derivatives is explicitly deduced. Various forms of Hirota–Miwa equations are derived for the τ -functions or equivalently Toeplitz determinants of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.