Abstract

We construct locally supported basis functions which are biorthogonal to conforming nodal finite element basis functions of degree p in one dimension. In contrast to earlier approaches, these basis functions have the same support as the nodal finite element basis functions and reproduce the conforming finite element space of degree p - 1. Working with Gaus-Lobatto nodes, we find an interesting connection between biorthogonality and quadrature formulas. One important application of these newly constructed biorthogonal basis functions are two-dimensional mortar finite elements. The weak continuity condition of the constrained mortar space is realized in terms of our new dual bases. As a result, local static condensation can be applied which is very attractive from the numerical point of view. Numerical results are presented for cubic mortar finite elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call