Abstract

Oil exploitation in many African countries is associated with litigation and conflicts to water and soil pollution. It is because of inadequate planning for management of oil spills and industrial effluents in environmentally sustainable manner. Uganda’s natural resources such as soils and water bodies are threatened by contamination due to rapid industrialization and rural-urban migration in established Industrial Business Parks and planned oil and gas production at Albertine Graben Region. The low level of compliance to industrial effluents discharge standards relevant to specific environmental receptors and activities within oil and gas sector development pose a big question of how to sustain the biodiversity and natural resource management. Experiences from elsewhere have shown bioremediation as a viable and proven option to provide potentially manageable solutions to resulting pollution as a substitute to modern well-known remediation methods, for it is relatively cheaper, more efficient and minimal toxic byproducts after treatment. The most used bioremediation agents in different studies reviewed are bacterial species especially Pseudomonas and Bacillus, followed by Aspergillus a fungi species, microalgae and aquatic plants such as duckweed, macrophytes and pteridophytes. Regardless of the waste produced in either oil and gas sector or industries, these agents have shown greater biodegradation rates. Pseudomonas sp. has a degradation efficiency of oil compounds ranging from 90% - 100%, and Aspergillus sp. 75% - 95%. Some aquatic plants can thrive in created wetlands with relatively still water such as Phragmites australis which can degrade hydrocarbons especially Aromatic compounds with benzene ring up to 95%. It can thrive in salty water with high pH range of 4.8 - 8.2. With industrial wastewater, algae is the most dominant with the degradation rates varying from 65% -100% and bacteria at 70% - 90%. Most of the reported results are in the developed country context. In developing countries, duckweed is reported as the commonest aquatic plant in wastewater treatment for removal of heavy metals because it is more tolerant to a wide range of environmental conditions and produce biomass faster. It has a removal rate of heavy metals between 90% and 100%. Basing on literature data analysis, bacteria are more suitable for treating water from oil pollution using Pseudomonas sp. Phragmites australis is suited for cleaning up oil in both water and soil. Duckweed is the best in treating water polluted with industrial effluents. This paper presents the different bioremediation methods that Uganda can potentially apply to mitigate the increased risk of environmental pollutions from planned industrialization and oil and gas development in the Albertine Graben Region.

Highlights

  • Uganda is endowed with fertile soils and enough water resources known as wealth creating resources but threatened by contamination

  • Duckweed is the best in treating water polluted with industrial effluents

  • The water hyacinth can be used in removal of heavy metals and petroleum hydrocarbons which has been one of the plants that has populated Lake Victoria due to high eutrophication levels

Read more

Summary

Introduction

Uganda is endowed with fertile soils and enough water resources known as wealth creating resources but threatened by contamination. Different human activities within oil industry such as exploration, production, transport, refining and storage cause pollution from toxic hydrocarbon compounds [9]. Most environmental oil pollutants such as polycyclic aromatic hydrocarbons (PHAs), petroleum hydrocarbons, heavy metals and nutrient-rich organics cause deleterious effects due to their inertness and toxicity [6]. To address these draw backs, the best method which suits the complete removal of pollutants is using bioremediation approach which uses natural biological activities to destroy various contaminants. Bioremediation process uses various agents such as bacteria, yeast, fungi, algae

Kabenge et al DOI
Study Area
Discovered Oil Reserves in Uganda
Waste Production in Oil Processing and Manufacturing Industries
Conclusion
Evaluation of
Results
Bioremediation of Oil Compounds Using Microorganisms
Bioremediation for Treatment of Industrial Wastewater
Literature Data Analysis for Table 4 to Table 6 for Periods from 2016 to 2001
Best Suited Bioremediation Applications in Uganda
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.