Abstract
Water pollution is an issue of great concern worldwide, contamination by organic compounds, inorganic compounds and microorganisms. Bioremediation using microorganisms helps in the removal of toxic metals from the environment. The focus is on the heavy metals associated with environmental contamination, lead (Pb), cadmium (Cd), and chromium (Cr) which are potentially hazardous to ecosystems. In the present study textile effluent was collected, and subjected to Physicochemical treatment methods , Herbal-Metal nanocomposite was prepared and used to treat textile effluents. As a bioremediation study, the plant growth potential of treated effluents was evaluated using pot studies of an aquatic plant .Laboratory and field test results confirmed superior bioremediation efficiency and long-term effect. When compared to today’s most-efficient bioremediation technologies there is an efficient, fast, safe, and inexpensive way to clean up polluted waters through acceleration of natural bioremediation process. Nanotechnology provides an economical, convenient and ecofriendly means of wastewater remediation. The results obtained in this study shall be carried out as future studies using different types and concentrations of nanoparticles for the treatment of any types of effluents causing land and water pollution. There is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals released into the environment and to safeguard the ecosystem. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of University of Shanghai for Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.