Abstract
A novel carrier material was obtained by coating puffed rhubarb rice (PRR) with calcium alginate (CA) membrane. The carrier material was prepared to contain oil-degrading bacterial strains and inorganic nutrients through entrapping them in different locations. This formulation possessed floatability, biodegradability and nutrient slow-release properties. Therefore, it could be applied for oil biodegradation on seawater surfaces. For controlling the release rate of nutrients, the optimal preparation technique was established. The number of viable cells immobilized on the carrier material reached 2 × 109 CFU/g. This formulation could be stored at −20 °C for three months without a significant decrease in the number of viable immobilized cells (4 × 108 CFU/g). Scanning electron microscope (SEM) results showed that the cells were immobilized on the outer CA membrane, and the inorganic nutrients were entrapped in the inner PRR and CA membrane. The immobilized cells were able to remove 86% of the diesel oil at an initial diesel oil concentration of 1% (v/v), an incubation temperature of 37 °C, during three days of incubation. Gas chromatography-mass spectrometry (GC–MS) analysis results showed that most components of diesel oil were degraded by the formulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have