Abstract

Burgeoning commercial applications of catechol have led to its excessive accumulation in the environment, thereby posing a severe ecological threat. Bioremediation has emerged as a promising solution. The potential of the microalga Crypthecodinium cohnii to degrade catechol and use the byproduct as a carbon source was investigated in this study. Catechol significantly increased C. cohnii growth and was rapidly catabolized within 60 h of cultivation. Transcriptomic analysis highlighted the key genes involved in catechol degradation. Real-time polymerase chain reaction (RT-PCR) analysis showed that transcription of key genes CatA, CatB, and SaID involved in the ortho-cleavage pathway was remarkably increased by 2.9-, 4.2-, and 2.4- fold, respectively. Key primary metabolite content was also markedly altered, with a specific increment in polyunsaturated fatty acids. Electron microscopy and antioxidant analysis showed that C. cohnii could tolerate catechol treatment without morphological aberrations or oxidative stress. The findings provide a strategy for C. cohnii in the bioremediation of catechol and concurrent polyunsaturated fatty acids (PUFA) accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.