Abstract

The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (μg PAH g−1 soil d−1) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call