Abstract
Bioreducible are described here, cross-linked Pluronic micelles carrying doxorubicin (DOX) for folate-mediated cancer targeting. The amine-terminated Pluronic® F-127 was functionalized by grafting acrylic acid (AA) to the hydrophobic block (AA-Pluronic-NH2). Folic acid (FA), hydrazine (H), and cystamine (C) were sequentially conjugated to AA-Pluronic-NH2, followed by DOX conjugation via an acid-labile hydrazone bond (FA-Pluronic-C/H-DOX). The DOX content was approximately 143 µg/mg of polymer. We prepared bioreducible cross-linked micelles using FA-Pluronic-C/H-DOX, which had a diameter of 156.1 nm. After incubation for 24 h with 10 mM of dithiothreitol, the micelle size decreased dramatically to 87.6 nm with a broad distribution, indicating that disulfide bonds in the micelle core were reductively cleaved. In vitro release data showed that the conjugated DOX was released slowly from the FA-Pluronic C/H-DOX micelles at pH 7.4, whereas there was a rapid DOX release at pH 5.2. Confocal images of HeLa cells showed enhanced cellular uptake of FA-Pluronic-C/H-DOX micelles as compared to nontargeted Pluronic-C/H-DOX micelles. The FA-Pluronic-C/H-DOX micelles killed more cells than the nontargeted micelles, but the cytotoxic effect was not as significant as free DOX. Additionally, micelles without DOX were not cytotoxic. On the basis of these results, pH- and redox potential–responsive FA-Pluronic-C/H-DOX micelles could potentially function as cancer-targeted and controlled DOX delivery systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have