Abstract
There is a pressing need for new cell-laden, printable bioinks to mimic stiffer tissues such as cartilage, fibrotic tissue and bone. PEGDA monomers are bioinks that crosslink with light to form a viscoelastic solid, however, they lack cell adhesion properties. Here, we utilized a hybrid bioink by combining self-assembled peptide nanofibers with PEGDA for 3D printing lumens. Adult human dermal fibroblast (aHDF) cells were first seeded in peptide-laden in 2D and 3D layers and cell behavior were studied. The cell's morphology remained spheres when they were infused in the 3D hydrogel and highly aligned with 2D overlay hydrogels. HDF cells did not adhere to unmodified PEGDA lumens, however, they successfully attached and proliferated on PEGDA/peptide lumens. Moreover, HDF cells seeded on the hybrid PEGDA/peptide lumens displayed a distinct spread F-actin morphology. The results showcase the potential of peptide hydrogels in facilitating interaction of anchorage dependent cells with PEGDA structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.