Abstract

Aerogels are lightweight and highly porous materials that have been found to have great potential in biomedical research because of some of their unique properties, such as their high surface area, tunable porosity, and biocompatibility. Researchers have been exploring ways to use aerogels to create biomimetic scaffolds inspired by natural extracellular matrices (ECMs) for various biomedical applications. Aerogel scaffolds can serve as three-dimensional (3D) templates for cell growth and tissue regeneration, promoting wound healing and tissue repair. Additionally, aerogel-based scaffolds have great potential in controlled drug delivery systems, where their high surface area and porosity enable the efficient loading and release of therapeutic agents. In this review, we discuss biopolymer-based biomimetic aerogel scaffolds for tissue engineering, drug delivery, and biosensors. Finally, we also discuss the potential directions in the development of aerogel-based biomimetic scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.