Abstract

This work synthesized Hydroxyapatite (HA) from common cockle shells using a precipitation method and fabricated nanofiber scaffolds of polycaprolactone (PCL)-HA composites with combinations of several polymers (i.e., gelatin, chitosan, and collagen) using electrospinning. The synthesized HA had a small agglomerate shape, solid structure, and few interconnected micropores. Energy Dispersive X-Ray Spectroscopy (EDS) analysis revealed that the synthesized HA exhibited a Ca/P molar ratio of 1.68. All nanofiber samples were nontoxic with cell viability values of 70.46–91.78%. The PCL-HA-Gelatin nanofiber was the best mechanical properties of the scaffold with the high values of tensile strength, modulus of elasticity, and breaking-point elongation at (9.80 ± 1.36) MPa, (0.81 ± 0.09) MPa, and (61.5 ± 7.75) %, respectively. There was no significant difference in the average cell viability of the samples. Nanofiber scaffolds of PCL-HA polymer have the potential for bone tissue engineering applications by satisfying their mechanical property and cytotoxicity assay criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call