Abstract
Bioplastics are promoted as safer alternatives to tackle the long-term persistence of conventional plastics. However, information on the potential release of additives and non-intentionally added substances (NIAS) in the surrounding environment is limited, and biological effects of the leachates have been little studied. Leachates produced from three bioplastics, i.e. compostable bags (CB), bio-polyethylene terephthalate bottles (bioPET) and polylactic acid cups (PLA), and a control polymeric material, i.e. rubber tire (TR), were examined. The chemical nature of bioplastic polyesters PET, PLA and poly (butylene adipate-co-terephthalate) (PBAT) in CB, was confirmed by analytical pyrolysis. Fragments were incubated in artificial sea water for 14 days at 20 °C in darkness and leachate contents examined by GC-MS and HPLC-MS/MS. Catalysts and stabilizers represented the majority of chemicals in TR, while NIAS (e.g. 1,6-dioxacyclododecane-7,12-dione) were the main components of CB. Bisphenol A occurred in all leachates at a concentration range 0.3–4.8 μg/L. Trace metals at concentrations higher than control water were found in all leachates, albeit more represented in leachates from CB and TR. A dose response to 11 dilutions of leachates (in the range 0.6–100%) was tested for biological effects on early embryo stages of Mytilus galloprovincialis. Embryotoxicity was observed in the whole range of tested concentrations, the magnitude of effect depending on the polymers. The highest concentrations caused reduction of egg fertilization (CB, bioPET, TR) and of larvae motility (CB, PLA, TR). TR leachates also provoked larvae mortality in the range 10–100%. Effects on adult mussel physiology were evaluated after a 7-day in vivo exposure to the different leachates at 0.6% concentration. Nine biomarkers concerning lysosomal functionality, neurotransmission, antioxidant and immune responses were assessed. All lysosomal parameters were affected, and serum lysozyme activity inhibited. Harmonized chemical and biological approaches are recommended to assess bioplastic safety and support production of sustainable bioplastics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.