Abstract

Contamination of foodstuffs by environmental pollutants (e.g. dioxins, metals) receives much attention. Until recently, food packaging as a source of xenobiotics, especially those with endocrine disrupting properties, has received little awareness despite its ubiquitous use. This article reviews the regulations and use of endocrine disrupting compounds (EDCs) in food packaging and discusses their presence within the context of new toxicology paradigms. I focused on substances known to be legally used in food packaging that have been shown to exhibit endocrine disruptive effects in biological systems. I compiled a list of 50 known or potential EDCs used in food contact materials and examined data of EDCs leaching from packaging into food, with a focus on nonylphenol. I included recent advances in toxicology: mixture effects, the developmental origins of adult disease hypothesis, low-dose effects, and epigenetics. I especially considered the case of bisphenol A. The core hypothesis of this review is that chemicals leaching from packaging into food contribute to human EDCs exposure and might lead to chronic disease in light of the current knowledge. Food contact materials are a major source of food contaminants. Many migrating compounds, possibly with endocrine disruptive properties, remain unidentified. There is a need for information on identity/quantity of chemicals leaching into food, human exposure, and long-term impact on health. Especially EDCs in food packaging are of concern. Even at low concentrations, chronic exposure to EDCs is toxicologically relevant. Concerns increase when humans are exposed to mixtures of similar acting EDCs and/or during sensitive windows of development. In particular, non-intentionally added substances (NIAS) migrating from food contact materials need toxicological characterization; the overall migrate of the finished packaging could be evaluated for biological effects using bioassays. The widespread legal use of EDCs in food packaging requires dedicated assessment and should be updated according to contemporary scientific knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call