Abstract

In this paper, crude flakes (CFs) of shellac were converted into purified, nonwoven, thermospun fibers (shellac floss) using two devices, namely, an electric thermospinner (ETS) and a microwave thermospinner (MTS). This conversion was achieved by the action of heating and the centrifugal forces that arose toward the outside of the spinner-head cavity. The dissolved MTS floss was bleached using hydrogen peroxide to produce the bleached MTS floss. The unbleached shellac (CFs, ETS floss, and MTS floss) and the bleached MTS floss were characterized physically and chemically. There was no deterioration in the floss properties due to the heating tools or bleaching process. For the unbleached shellac, although there were no statistical differences in properties among the three shellac types (CFs, ETS floss, and MTS floss), except for insolubility in hot alcohol, acid value, and moisture content, the MTS floss exhibited superior values compared with the other types for nearly all the properties studied. Bleaching the MTS floss produced the greatest color change among other studies, caused a high reduction in insoluble solid matter due to increasing the solubility of some of the solid constituents of shellac, and slightly decreased its Young's modulus (E). The important dental applications were surveyed and it was suggested that the suitability was enhanced by using the bleached MTS floss, based on its superior whiteness, along with the unique properties detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.