Abstract
Anterior Cruciate Ligament (ACL) injuries rank among the most prevalent and severe types of injuries, significantly impacting both athletes and non-athletes alike. These injuries not only result in immediate physical impairment, such as intense pain, substantial swelling, and a marked loss of mobility, but also carry long-term health consequences that can alter a person’s quality of life. Chronic pain, persistent instability, and an increased risk of developing osteoarthritis are among the lasting effects that can follow an ACL injury. An in-depth understanding of the biophysics behind ACL injuries is paramount for devising effective prevention and treatment protocols. Biophysics, which combines principles from physics with biological systems, provides crucial insights into the mechanical and structural integrity of the ACL and its susceptibility to injury under various conditions. This systematic review aims to collate and synthesize the current knowledge surrounding the biophysical mechanisms that underlie ACL injuries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.