Abstract

Plant leaves are arranged around a stem axis in a regular pattern characterized by common fractions, a phenomenon known as phyllotaxis or phyllotaxy. As plants grow, these fractions often transition according to simple rules related to Fibonacci sequences. This mathematical regularity originates from leaf primordia at the shoot tip (shoot apical meristem), which successively arise at fixed intervals of a divergence angle, typically the golden angle of 137.5°. Algebraic and numerical interpretations have been proposed to explain the golden angle observed in phyllotaxis. However, it remains unknown whether phyllotaxis has adaptive value, even though two centuries have passed since the phenomenon was discovered. Here, I propose a new adaptive mechanism explaining the presence of the golden angle. This angle is the optimal solution to minimize the energy cost of phyllotaxis transition. This model accounts for not only the high precision of the golden angle but also the occurrences of other angles observed in nature. The model also effectively explains the observed diversity of rational and irrational numbers in phyllotaxis.

Highlights

  • Plant leaves are arranged around a stem axis in a regular pattern characterized by common fractions, a phenomenon known as phyllotaxis or phyllotaxy

  • This mathematical regularity originates from leaf primordia at the shoot tip, which successively arise at fixed intervals of a divergence angle, typically the golden angle of 137.5°

  • The pertinent point on which I focus is the empirical fact that phyllotaxis, or the divergence angle, does change between two stages, that is to say, (i) the leaf arrangement at a shoot tip and (ii) the leaf arrangement on a developed stem

Read more

Summary

Introduction

Plant leaves are arranged around a stem axis in a regular pattern characterized by common fractions, a phenomenon known as phyllotaxis or phyllotaxy. As plants grow, these fractions often transition according to simple rules related to Fibonacci sequences. These fractions often transition according to simple rules related to Fibonacci sequences This mathematical regularity originates from leaf primordia at the shoot tip (shoot apical meristem), which successively arise at fixed intervals of a divergence angle, typically the golden angle of 137.5°. I propose a new adaptive mechanism explaining the presence of the golden angle This angle is the optimal solution to minimize the energy cost of phyllotaxis transition. I demonstrate that the golden angle minimizes the energy cost of phyllotaxis transition

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.