Abstract
Influenza RNA polymerase is composed of three subunits, PA, PB1, and PB2, which interact with each other for transcription and replication of the viral RNA genome in the nucleus of infected cells. PB2 RNA-binding 627-domain (residues 535–693), located in the C-terminus, presents a highly basic surface around residue lysine 627 and has been proposed to interact with viral or cellular factors, resulting in host adaptation. However, the function of this domain is not yet characterized in detail. In this study, we identified RNA-binding activity and RNA-binding surfaces in both the N-terminal and basic C-terminal regions of PB2 627-domain using NMR experiments. Through mutagenesis studies, we confirmed which residues directly interact with RNA and mapped their locations on the RNA-binding surface. In addition, by luciferase activity assays, we showed that influenza virus polymerase activity may correlate with the interaction between PB2 and RNA. Representative host adaptive mutations (residues 591 and 627) were found to be located on the RNA-binding surface and were confirmed to directly interact with RNA and to affect polymerase activity. From these results, we suggest that influenza virus polymerase activity may be regulated through the interaction between PB2 627-domain and RNA and that consequently host adaptation of the virus may be influenced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.