Abstract

Mulberry Diels-Alder-type adducts (MDAAs), isolated from Morus alba root bark, exhibit dual activity against viral and bacterial pathogens but show sobering efficacy following oral administration. Inhalation administration may overcome issues with oral bioavailability and improve efficacy for the treatment of respiratory infections. To assess the suitability of MDAAs for inhalation administration, physicochemical (e.g. pH, pKa, logP, pH-dependent solubility) and biopharmaceutical (epithelial cytotoxicity, permeability, and uptake) properties of two bioactive MDAA stereoisomers sanggenon C (SGC) and sanggenon D (SGD) were evaluated as isolated natural compounds and within parent extracts (MA21, MA60). Despite their structural similarity, SGD exhibited a 10-fold higher solubility than SGC across pH 1.2–7.4, with slight increases at neutral pH. Both compounds were more soluble in isolated form than in the parent extracts. The more lipophilic SGC was found to be more cytotoxic when compared to SGD, indicating a better cellular penetration, which was confirmed by uptake studies. Nonetheless, SGC and SGD exhibited no measurable permeability across intact Calu-3 monolayers, highlighting their potential for increased lung retention and improved local anti-infective activity following inhalation administration. Results suggest that SGC and SGD in isolated form, rather than as extracts, are promising candidates for pulmonary drug delivery to treat lung infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call