Abstract
Diatom frustules exhibit various sophisticated shapes with highly ordered hierarchical porous nanostructures, which are promising for applications in the biomimetic fabrication of nanostructured materials. We propose a universal biopattern transfer process for the fabrication of functional micro/nanostructures using diatom frustules as the biotemplates. Porous silicon microcylinders with a thickness of 20 μm are fabricated by deep reactive ion etching of a silicon substrate, which is covered by a layer of diatom frustules. With a similar process, a fast atom beam technique is used to etch the silicon substrate and silicon nanolattices are obtained. By depositing a thin layer of gold film on the diatom bonded silicon substrate, followed by releasing the diatom frustules by diluted HF, gold nanodisks with a thickness of 30 nm are successfully fabricated. The nanodisk array arranges in diamond or radial patterns, replicating the nanostructure of diatom frustules. In addition, a parylene nanodot array is also demonstrated using this diatom-based biopattern transfer process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.